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ots 

laced into the water-cooled crucibles and co-deposition  of vapor flows on rotated substrate. 

 

 
 

Methods, Assumptions, and Procedures 

Summary 

 

At the final  stage of the work we focused on the possibility of producing defectfree foils with 

the surface size of 150 x 200 mm2 based on TiAl alloy with Cr and Nb additives. During work 

performance in the second stage it was established that because of the difference in the distance 

to the axis of revolution, the thickness of different sections of the foil differs significantly. 

Therefore, in order to produce foil of a more uniform thickness, an impermeable screen was 

installed in the chamber, ensuring shadowing of foil sections located closer to the axis of 

revolution of the substrate holder. Conducted research showed that such geometry of the vapour 

flow deposition provides a lowering of foil non-uniformity across the thickness. It is shown that 

element distribution across the foil thickness does not depend on the location of the section on its 

surface. In order to obtain Ti-Al-Cr-Nb condensates we used three evaporators, accommodating 

ingots of Ti-Cr, Al and Nb. With preservation of stable operation of the unit using this schematic 

(three evaporators and a substrate rotating above them about a vertical axis), we produced 

condensates with a uniform distribution of elements across the thickness. Investigation of 

condensate microstructure in the initial condition showed t

substructure on the nanoscale. The foils were sent to the Partner.  

 Summarizing the obtained in this work results we can conclude  that the relatively thin 

intermetallic foils on the basis Ti-Al and Ti-Al-Cr-Nb systems with the specified composition 

and thickness can be produced by electron beam evaporation of components from the ing

p
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1. Producing a condensate of Ti-Al system intermetallic with an improved uniformity of 

thickness.  

 transmission to point B) using a screening 

artition 

substrates holder (conventional 

design): 1-ingot Al, 2-substrate, 3-ingot Ti, 4-rotating holder 

 

 

Condensate deposition on a rotating substrate creates a non-uniformity of thickness related to the 

fact that in the point of maximum removal of the substrate from the evaporation source the 

distance from the source to the nearest substrate edge (point A Fig. 1) is smaller than the distance 

to the farther edge (point B Fig. 1). As the vapour flow intensity decreases in proportion to the 

square of the distance, the thickness of the deposited condensate in point A turns out to be 

greater than condensate thickness in point B. Partial shadowing of the vapour flow (complete 

shadowing of the flow to point A and complete

p was used to reduce this non-uniformity.  
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Fig.1. Schematic of electron beam evaporation and scheme of 
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Schematic of the vacuum chamber to produce Ti-Al intermetallic with an improved uniformity is 

given in Fig. 2. Condensate of Ti-Al intermetallic was deposited by the method of electron beam 

evaporation from two ingots of Ti and Al (1 and 3). The substrates (2) used were high-

temperature steel plates (150x200 mm size) fastened on a rotating holder (4). Substrate rotation 

rate during the process was constant and equal to 30 rpms. Substrate heating was performed 

using two auxiliary electron beam evaporators (not shown in the schematic). Substrate 

temperature during the condensate deposition was equal 850-900oC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2. Schematic of electron beam evaporation and scheme of substrates holder with dividing 

partition: 1 - ingot Al, 2 – substrate, 3 - ingot Ti, 4 - rotating holder, 5- vapour flow, 6 - dividing 

partition 
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Ti an Al ingots were placed into water-cooled crucibles located under the substrate at 0.3 m 

distance. During evaporation the ingots were lifted at a constant rate, which was selected to be 

such for each ingot that the distance from the pool surface to the substrate was constant.  
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A layer of CaF2 (2-4 mcm) salt was first deposited on the substrate to simplify condensate 

separation. At condensate cooling, because of the great difference in the coefficients of thermal 

expansion (CTE) of the salt and condensate, the condensate separated along the salt-condensate 

boundary. 

A screening partition (6) was used for partial shadowing of the vapour flow (5).   

 

2. Producing Ti-Al intermetallic condensate with Nb and Cr additives  

 

Schematic of the vacuum chamber for producing Ti-Al intermetallic with Nb and Cr additives is 

shown in Fig. 3.  
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Fig 3. Schematic of electron beam evaporation and scheme of substrates holder with dividing 

partition: 1 - ingot Al, 2 - ingot Nb, 3 – substrate, 4 - ingot Ti-Cr, 5 - rotating holder, 6 - vapour 

flow, 7 - dividing partition 
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The condensate was deposited by the method of electron beam evaporation of three ingots Ti-Cr  

(4), Al (1) and Nb (2). The substrates used were two plates of high-temperature resistant steel 

(150x200 mm size) fastened on a rotating holder (5). The rate of substrate rotation during the 

process was constant at 30 rmps. Substrate heating was performed using two auxiliary electron 

beam evaporators (not shown in the schematic). Substrate temperature during condensate 

deposition was equal to 850 – 900oC.  

Ti and Al ingots were in water-cooled crucibles located under the substrate at 0.3 m distance. 

During evaporation the ingots were raised at a constant rate, which was selected for each ingot to 

be such that the distance from the pool surface to the substrate was constant.  

To simplify condensate separation a layer of CaF2 salt (2-4 mcm) was first applied on the 

substrate. At condensate cooling condensate separation occurred along the salt-condensate 

boundary due to the great differences in the coefficients of thermal expansion (CTE) of the salt 

and the condensate. 

 

Results and Discussion 
 

 Application of the above screening partition allowed a certain leveling of condensate 

thickness over the area. Fig. 4 shows examples of condensate thickness distribution over its area 

under the conditions of condensation without (1) and the screening partition (2). 
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Fig. 4. Distribution of condensate thickness over the area.1- in conditions of condensation 

without screen; 2- in conditions of condensation with screening partition 
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Thus, application of a screening partition allows adjustment of the vapour flow at its 

condensation on the substrate, thus providing condensate leveling by thickness. Condensates of 

equal thickness can be produced by modeling the shutter geometry. 

The main goal during fulfillment of the third stage was producing a condensate of TiAl 

intermetallic alloyed by Cr and Nb with uniform distribution of alloying elements across the 

thickness. This goal was successfully achieved using three evaporators: Ti-Cr, Al and Nb 

following the procedure described above. A characteristic distribution of elements across the 

condensate thickness is shown in Fig. 5.  
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              Fig. 5. Distribution of component concentration across the condensate thickness. 

 

It is seen that the proposed condensation schematic provides a uniform distribution of 

components across the condensate thickness and the required composition. This resulted in 

producing condensates, the composition of which corresponds to the two-phase region 

(TiAl+Ti3Al) with different Ti/Al ratios.  Condensate microstructures are given in Fig. 6. 

 

                                     
                               a                                                                             b 

Fig.6.Microstructure of Ti37,9Al2,24Cr1,7Nb at.% (a) and Ti42,4Al2,1Cr2,3Nb at.% (b) 

condensates deposited at the temperatures of  850-900oC 
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As shown by X-Ray phase analysis the produced condensates consist of a mixture of Ti3Al and 

TiAl, the volume fractions of which depend on the condensate composition – with increase of 

aluminium content the volume fraction of TiAl phase rises. The respective diffractograms are 

given in Fig. 7(a,b).  
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       Fig.7. Fragments of the XRD patterns for 

samples Ti37,9Al2,24Cr1,7Nb at.% as 

deposited at TS=850-900oC (a) and annealed at 

T=1200oC,1h (c) and Ti42,4Al2,1Cr2,3Nb 

at.% as deposited at TS=850-900oC (b) and 

annealed at T=1100oC,1h (d), at T=1200oC,1h 

(e) . 
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It is seen that the condensates in the initial condition are characterized by residual lamination 

related to instability of the vapour flows at substrate displacement above the evaporators with 

different ingots. As was shown earlier, annealing of condensates at the temperature of 1000o C, 

 2 h, allows an essential reduction of their lamination, without, however, eliminating it 

completely. Annealing directly in the chamber requires essential technological optimization, and 

its duration is limited.  

To optimize the regime of annealing treatment, ensuring elimination of residual 

lamination and formation of structurally homogeneous condensates, annealing of condensates 

with different composition at 1100 и 1200 оС, 1 hour was performed. To prevent condensate 

distortion at cooling, they were placed between molybdenum plates. It should be noted that no 

molybdenum was found on the annealed condensate surface. Fig. 8 gives the microstructures of 

annealed condensates of different composition.  One can see that annealing at 1100оС leads to 

elimination of lamination. The annealing temperature substantially affect on condensates 

microstructure.  So, annealing at 1100оС leads to two-phase structure (TiAl+Ti3Al) formation   

(see fig.7  ) with high dispersion of phases (fig.8c,d). Annealing at 1200оС leads to roughening 

of  Ti3Al  particles and lamel structure formation. 
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                                 a                                                                         b 

          
                                 c                                                                         d 

          
                                 e                                                                         f        

Fig. 8. Microstructures of Ti37,8Al2,24Cr1,7Nb condensate, annealed at 1200oC, 1 h (a,b) and 

Ti42,4Al2,1Cr2,3Nb condensate, annealed at 1100oC, 1 h. (c,d), at 1200oC, 1 h (e,f) 

 

It is seen that the structure of annealed condensates depends on their composition. In condensates 

of a composition close to the lower boundary of the two-phase region (TiAl+Ti3Al) coarse Ti3Al 

particles form during annealing (Fig. 8 a, b). Annealing of aluminium enriched condensates, 

alongside formation of coarse Ti3Al particles, leads to formation of a lamellar structure (Fig. 8 e, 

f), which is known to lead to improvement of the condensate mechanical properties.   
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Characteristics of  condensates with a large surface area. 
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Condensate #2(RT83) 
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Condensate #3(RT89) 
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Condensate #4(RT91) 
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Condensate #5(RT94) 
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Conclusions 
 

1. The using of additional screen in vacuum chamber, which shadows part of the 

substrate, allows to improve the uniform of thickness of Ti-Al foil which is forming  

during  EBPVD process. 

2. The intermetallic foils 150  x 200 mm2 surface and thickness of up to 200 micron on 

the basis of  Ti-Al-Cr-Nb system of the specified composition with uniform 

distribution of component  across the entire their thickness were obtained by co-

deposition  on rotated substrate vapor flows produced by electron beam evaporation 

of  Ti-Cr, Al and Nb ingot. 

3. Thermal treatment of foils obtained by EBPVD method allow to improve uniform 

component distribution across of the entire their thickness and affect on their 

microstructure characteristics.   

4. Obtained in this work results demonstrate that the relatively thick intermetallic foils 

on the basis Ti-Al and Ti-Al-Cr-Nb systems with the specified composition and 

thickness can be produced by the method of electron beam evaporation of 

components from the ingots placed into the water-cooled crucibles and condensation 

of vapor flows of their component on rotated substrate. 
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EBPBD – electron-beam physical vapor deposition 

TS - condensation temperature 

XRD - X-ray diffraction 
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